

The era of precision cosmology has revealed that ~85% of the matter in the universe is dark matter.

Both WIMPs and WISPs produce distinct γ -ray signatures.

ALL-SKY MEDIUM ENERGY GAMMA-RAY OBSERVATORY **Dark Matter Prospects**

R. Caputo^a, M. Meyer^b, M. Sánchez-Conde^c, for the AMEGO Team^d ^aUMD/NASA/GSFC, ^bSLAC/Stanford, ^cIFT UAM-CSIC, ^dhttps://asd.gsfc.nasa.gov/amego/

> Two leading candidates, are weakly interacting massive particles (WIMPs) and weakly interacting sub-eV particles (WISPs) like axions and axionlike particles.

AMEGO will allow us to explore new areas of dark matter parameter space and provide unprecedented access to its particle nature

INTRODUCTION TO AMEGO

- Probe Concept: 2020 NASA Astrophysics Decadal Review
- Observing strategy: survey
 - 80% sky/orbit, ~2.5 sr FoV
- Well *understood*, *tested* technologies with *space* heritage
- Science: pulsars/magnetars, gamma-ray bursts and multimessenger astrophysics, active galaxies, dark matter

DARK MATTER DETECTION

- Dark matter detection
 - High energy: Fermi-LAT, Very High Energy: ACTs
 - Good spatial and spectral resolution, full-sky sensitivity
- Weakly Interacting Massive Particles (WIMPs)
 - Targets: dwarf spheroidal galaxies, Galactic Center
 - LAT: m_χ~500 MeV to 100 GeV, ACT: >1 TeV [6-7]
- Weakly Interacting Sub-eV Particles (WISPs)
 - Targets: pulsars, galaxy clusters, SN
 - X-rays, LAT: $m_{neV} \le 10^{-2}$, $0.5 \le m_{neV} \le 100$ [8-9]

WIMPs and WISPs with AMEGO

Summary of WIMP dark matter results obtained with *Fermi*-LAT. Lines are upper limits while closed contours are the Galactic Center Excess from dark matter annihilations [7, 10].

- Angular resolution in MeV
 - Better understanding in GC
 - Population of sources vs. DM
 - Search lower mass WIMPs
- New searches for dark photons
 - Dark sector physics
- Higher sensitivity in MeV • Deeper searches

Spatial distribution of Fermi-LAT Galactic center excess [12]

Summary of ALP results obtained with Fermi-LAT and regions of sensitivity for AMEGO. Shaded regions are excluded [11].

- Energy resolution/Polarization Spectral features from
 - oscillations
- Angular resolution in MeV
 - Signatures sensitive to lower WISP masses
- Higher sensitivity in MeV WISP flux- SN peak ~50 MeV

AMEGO Dark Matter Searches

REFERENCES

[1] A. Moiseev et al., *All-Sky Medium Energy Gamma-ray Observatory (AMEGO)*, in ICRC 2017 (July 2017)
[2] R. Caputo et al., *AMEGO: Extending Fermi-LAT Discoveries into MeV Y-ray Atronomy*, in ICRC (July 2017)
[3] J. S. Perkins et al. *AMEGO: Instrument and Technology Development*, in ICRC (July 2017)
[4] J. L. Racusin et al. *AMEGO: Transients and Multi-Messenger Sources*, in ICRC (July 2017)
[5] J. S. Perkins et al. *AMEGO: Active Galactic Nuclei*, in ICRC (July 2017)
[6] Fermi-LAT Collaboration, M. Ackermann et al., PRL **115** (2015) 231301
[7] Fermi-LAT Collaboration, M. Ackermann et al., AJ **840** (2017) 43
[8] D. Wouters and P. Brun, ApJ **772** (2013) 44
[9] Fermi-LAT Collaboration, M. Ajello et al., PRL **116** (2016) 161101
[10] E. Charles et al., Phys Rep **636** (2016) 1-46
[11] M. Meyer et al., PRL **118** (2017) 011103
[12] Credit: NASA GSFC
[13] Credit: ESA/Hubble & NASA