

Fermi-LAT study of the ISM in Chamaeleon region using the Planck thermal dust optical depth

Katsuhiro Hayashi (Nagoya Univ.) on behalf of the *Fermi*-LAT collaboration

 $\tau_{353} \propto N_{\rm H}^{1.3} \, {\rm model}$

γ**-ray data**

Katsuhiro Hayashi

7th Fermi symposium @Garmisch-Partenkirchen, Germany 15-20 October, 2017

We report a γ -ray study of the ISM for the Chamaeleon molecular-cloud complex using a total column density (N_H) model based on the dust optical depth (τ_{353}) from the *Planck* thermal emission model. We found that the $\tau_{353} \propto N_{\rm H}^{1.3}$ model provides the best fit to the γ -ray data, which may suggest dust grain evolution in the molecular cloud complex.

γ rays ~ CRs x ISM (or ISRF)

Diffuse GeV γ rays are powerful probe to study the ISM

- γ-ray production does not depend on the chemical and thermodynamic state of the ISM
- A good tracer of the total gas **column density**

"Conventional γ-ray analysis" (e.g., Ackermann+12)

- Fit γ -ray data with linear combination of three gas maps under the assumption that CRs uniformly thread the ISM
- "dark gas" (gas not traced by standard HI and CO observations) map is inferred by dust extinction map

Study of *Y* **rays from Molecular Cloud Regions**

2

- in Orion/Perseus molecular clouds

N_H Model and \gamma-ray Analysis

3

