

Study of the Interstellar Medium and Cosmic-rays in Local HI Clouds

Oct. 15-20, 2017, 7th Fermi Symposium, Garmisch-Partenkirchen, Germany T. Mizuno (Hiroshima Univ.) on behalf of the Fermi-LAT collaboration

- Aims. We aim to study the interstellar medium (ISM) and cosmic-rays (CRs) in local HI clouds in the 3rd Galactic quadrant
- *Methods.* We evaluated the total gas column density $N(H_{tot})$ by investigating the correlations among 21 cm survey data (HI4PI), Planck dust models (optical depth at 353 GHz τ_{353} and radiance *R*), and Fermi-LAT γ -ray data
- Results & Prospects. We found $N(H_{tot,\gamma})/\tau_{353}$ and $N(H_{tot,\gamma})/R$ depend on dust temperature T_d in the North region, and $N(H_{tot,\gamma})/\tau_{353}$ is not constant over τ_{353} in the South region. We will examine the systematic uncertainties and discuss ISM and CRs properties.

Objective of the Study

- An accurate estimate of $N(H_{tot})$ is crucial to understand the ISM and CRs
- Considerable amount of ISM gas is not properly traced by HI and CO line surveys [1]. ٠ The distribution of this "dark gas" can be estimated by dust data, but the procedure has not been established yet.
- We studied mid-latitude region of the 3rd quadrant using Fermi-LAT γ -ray data (as a robust tracer of *N*(H_{tot})), HI4PI data [2], and Planck dust models [3], in order to examine the following ISM properties and implications on CRs
 - (a) T_{d} dependence of dust-emission to gas ratio [4]
 - (b) Non-linearity of dust-emission to gas ratio [5][6]

8 years, P8R2 CLEAN V6, 0.1-25.6 GeV

Several areas (an intermediate velocity cloud, the Orion-Eridanus superbubble, and a peculiar W_{μ} -dust relation) are masked

100

W_{HI}-Dust Relations

- North: T_{d} dependence is seen and is larger in the W_{HI} - τ_{353} relation
- South: T_d dependence is weak, but a non-linear relation is observed
- We used linear relations which follow trends in high T_d & low $W_{\rm HI}$ area to construct initial $N(\rm H_{tot})$ template maps from τ_{353} and R

- We fit γ-ray data with a linear combination of gas template maps and other components (isotropic, inverse Compton, sources etc.)
- Under the assumption of a uniform CR density, emissivity should not depend on T_d (North) and should be constant over τ_{353} (South), if $N(H_{tot}) \propto \tau_{353}$ or R
- North: We prepared T_d -sorted maps and found a positive T_d dependence for τ_{353} , likely due to an overestimate of $N(H_{tot})/\tau_{353}$ in low T_d area (similar trend seen in [4])
- South: We prepared τ_{353} -sorted maps and found negative τ_{353} dependence, likely due to an overestimate of $N(H_{tot})/\tau_{353}$ in high τ_{353} area (similar trend seen in [5][6])
- To do: examine the systematic uncertainties and discuss ISM and CR properties

References:

[1] Grenier+05, Science 307, 1292 [2] HI4PI Collaboration 2016, A&A 594, 116

[3] Planck Collaboration XI 2014, A&A 571, 11 [4] Mizuno+16, ApJ 833, 278 [5] Roy+13, ApJ 763, 55

[6] Planck Collaboration XXVIII 2015, A&A 582, 31 [7] Abdo+09, ApJ 703, 1249

τ₃₅₃ (10^{-\}