A Galactic Center Excess in the Andromeda Galaxy M31 Seen with the *Fermi*-LAT

(Ackermann et al. 2017)

Xian Hou
YNAO, Kunming, China
and
Pierrick Martin
CNRS/IRAP, Toulouse, France

On behalf of the *Fermi*-LAT Collaboration

7th International *Fermi* Symposium
Garmisch-Partenkirchen, Germany
15-20 Oct 2017

How galaxies shine in gamma rays?

- Interactions of cosmic rays (CR) with interstellar medium (π^0 decay, inverse-Compton, bremsstrahlung)
- Astrophysical sources (supernova remnants, pulsars and pulsar wind nebulae, binaries…)
- Dark matter

LAT detected 7 extragalactic star-forming or starburst galaxies and performed systematic studies of more than 60 galaxies.

M31: only other large spiral local galaxy, close => best target for resolved analysis
Analysis and Results

Spatial analysis (>1 GeV)

- Gamma-ray emission is confined to inner regions (R~5 kpc)
- Not correlated with interstellar gas and star-formation sites
- Disk (plane) of the galaxy is not detected

Spectral analysis (>100 MeV)

- SED: PL, $\Gamma = 2.4$
- Adding cutoff: no significant improvement
- Consistent with the total interstellar emission or pion decay of the MW
- Less consistent with IC component of the MW
- Model difference: not significant
I. Interstellar emission

- π^0 decay
 - Low gas content to be compensated by high CR density at the galaxy center (similar to some regions in LMC)
 - But far from typical gas and star-formation regions (not detected in gamma rays)
- inverse-Compton (IC)
 - IC dominates the emission of M31: π^0 decay < 50% IC
 - Opposite to what is inferred for the MW: IC = 45% π^0 decay

II. Population of millisecond pulsars (MSPs)

- Related to old star populations in the disk and bulge of galaxies
- Suggested to be the origin of the Galactic Center Excess (GCE) (e.g. Brandt & Kocsis 15)
- Case of M31
 - Center: many old stars and X-ray binaries (Barmby+06, Voss & Gilfanov 07, Stiele+10)
 - Possible large population of MSPs at the center
 - Spatial distribution consistent with old stars (IRAC map)
 - SFR_M31 \sim 0.1x SFR_MW —— decrease the disk emission
 - Bulge mass_M31 \sim (5-6)xMW —— increase the center emission
 - Gamma-ray luminosity of M31 \sim 4-5x GCE

III. Dark matter (DM) annihilation/decay

- Smooth halo: Navarro–Frenk–White (NFW) profile
- Take GCE as reference
- J-factors
 - MW: 2×10^{22} GeV2/cm5
 - M31: 8×10^{18} GeV2/cm5
- Expected DM signal from M31: ~5x below observed value
 - But uncertainties on J-factor of M31…
 - And uncertainties on the GCE flux …