A Novel Model for Gamma-ray Source Classification using Automatic Feature Selection

METHOD: WE ARE DEVELOPING A NOVEL FRAMEWORK USING MACHINE LEARNING TECHNIQUES WITH AUTOMATIC FEATURE SELECTION ALGORITHMS FOR GAMMA-RAY OBJECT CLASSIFICATION.

RESULTS: USING RANDOM FOREST (RF) ALGORITHM FOR FEATURE SELECTION, WE CAN IMPROVE THE PERFORMANCE OF CLASSIFYING (A) <u>PULSARS/AGNS (ACCURACY >98%)</u> AND (B) <u>YOUNG PULSAR/MSPS</u> (ACCURACY > 95%) IN COMPARISON WITH PREVIOUS WORK.

Alex, P. Leung¹, Yuze Tong¹, Shengda Luo¹ & David C.Y. Hui² ¹Macau University of Science & Technology ²Chungnam National University

- 1. Conventional classifications require some knowledge of the gamma-ray properties of different classes of objects which can be far from complete in view of the relatively short history of gamma-ray astronomy.
- 2. Instead of relying on a prior knowledge, automatic classification let the data "speak for themselves" and generate the classification model.
- 3. In the previous attempt of classifying gamma-ray sources with machine learning techniques (e.g. Saz Parkinson et al. 2016 ApJ 820 8), the power of automatic feature selection has not be fully exploited.
- By coupling the classifiers with automatic feature selection algorithms,
 we aim to

i) Improving the prediction accuracyii) Provide a more cost-effective prediction modeliii) Enhancing the discovery power in data mining

Pulsars vs AGNs

Comparisons of ROC curves for PSR/AGN classifications based on our model (red) and Saz Parkinson et al. (2016) (black) using logistic regression (LR) as classifer

				ROC	frain of A	GN&PSR	using LR			
Sensitivity	1.0	-	0.088 (0.959, 0.966)							
	~		ſŏ	.088 (0.95 .3 (0.988,	9, 0.966) 0.948)		/		2	
	0.8	1							3	
	0.6	_								
			AUC: 0.991							
	0.4	-				AUC: 0.9	996		6	
	~			/					7	
	0.2	1		/					8	
	0.0	L	V						9	
		1	.0	0.8	0.6	0.4	0.2	0.0		
						cificity				

Ranked by importance(AGN&PSR)				
1	Variability_Index	20.868299		
2	Signif_Curve	20.620902		
3	Spectral_Index	17.407906		
4	hr45	15.140595		
5	Unc_Flux1000	14.315923		
6	SED1000_3000	11.729596		
7	Flux1000_3000	11.170445		
8	hr23	11.036605		
9	Unc_Energy_Flux100	10.177330		

A set of features automatically selected in our scheme without a prior knowledge and ranked accordingly.

XAPADA	Specificity		
Prediction Model	Accuracy (LR)		
Saz Parkinson et al. (2016)	94.9 %		
Our work	98.2 %		

Young Pulsar (YNG) vs Millisecond Pulsar (MSP)

Comparisons of ROC curves for YNG/MSP classification based on our model (red) and Saz Parkinson et al. (2016) (black) using logistic regression (LR) as classifer

Prediction Model	Accuracy (LR)
Saz Parkinson et al. (2016)	90.7%
Our work	95.7%

	Ranked by importance (MSP	ating)
1	Unc_Energy_Flux100	23.23109948
2	GLAT	13.57550697
3	Flux_Density	7.73807429
4	Signif_Curve	6.20134667
5	hr34	3.76813769
6	hr23	3.72374297
7	Spectral_Index	1.93633277
8	hr45	1.62792916

Ranked by importance (MSD&VNC)

Instead of 11 features adopted in Saz Parkinson et al. (2016), only 8 features are automatically selected in our scheme and ranked accordingly.