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The correlation between the time-resolved vFv peak energy (Ep) 
and flux in many GRB pulses has interesting implications for 
GRB emission physics. A power law relation between the two 
quantities is often observed. This was first observed by 
Golenetskii (1986)

It has been noted that when the redshift of some GRBs are 
known, then the correlation appears common in the rest frame. 
Assuming a common emission mechanism between GRBs, the 
fitted rest frame correlation could be used to estimate GRB 
redshifts. Fit for these

Plug back in

Now fit for redshift 

This unfortunately 
cannot reproduce 
known redshifts.
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We can instead try a Bayesian hierarchical model where we fit 
GRBs with known unknown redshift simultaneously. In this way 
the redshifts are automatically calibrated and errors are 
propagated in a statistically sound manner.

The various models describe different linkages between the 
data. We can now simulate GRBs from this model and assume 
we know some redshifts and try to estimate those we do not 
know

The simulated model fitting shows we should be able to recover 
redshift! (If the true model is similar.)

Unfortunately, when applied to real data, the redshifts are 
unconstrained and hence, under its current construction, the 
Golenetskii correlation CANNOT be used to estimate GRB 
redshifts.

The posteriors from the fitting can be propagated back into the rest frame and it 
becomes clear that the quantities for GRBS without known redshift are poorly 
modeled. However, we can use the fits to GRBs with known redshift to see that this is 
because GRBs have different rest frame normalizations pointing to different intrinsic 
emission physics.

THE REST-FRAME GOLENETSKII CORRELATION VIA A 
HIERARCHICAL BAYESIAN ANALYSIS
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Gamma-ray bursts (GRBs) are characterised by a strong correlation between the 
instantaneous luminosity and the spectral peak energy within a burst. This correlation, which 
is known as the hardness-intensity correlation or the Golenetskii correlation, not only holds 

important clues to the physics of GRBs but is thought to have the potential to determine 
redshifts of bursts. In this paper, I use a hierarchical Bayesian model to study the universality 

of the rest-frame Golenetskii correlation and in particular, I assess its use as a redshift 
estimator for GRBs. I find that using a power-law prescription of the correlation, the power-

law indices cluster near a common value, but have a broader variance than previously 
reported (∼ 1−2). Furthermore, I find evidence that there is spread in intrinsic rest-frame 
correlation normalizations for the GRBs in our sample (∼ 1051 − 1053 erg s−1). This points 

towards variable physical settings of the emission (magnetic field strength, number of 
emitting electrons, photospheric radius, viewing angle, etc.). Subsequently, these results 

eliminate the Golenetskii correlation as a useful tool for redshift determination and hence a 
cosmological probe.
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