New results in the application of the machine-z method
Istvan I. Racz1,2 (racz@complex.elte.hu), Dezső Ribli1, Zsolt Bagoly1,2, Istvan Csabai1,2, Istvan Horvath3, Lajos G. Balázs1,21Eötvös University, Budapest, 2MTA CSFK Konkoly Observatory, Budapest, 3National University of Public Service, Budapest

Overview
Several thousands of GRBs have been observed so far but we could measure the distance of only a few hundreds. We studied the parameters of GRBs with available spectroscopic redshift in order to be able to estimate the redshift of those GRBs without a measured redshift. To calculate their distances we applied the XGBoost algorithm [Chen & Guestrin (2016)]. For the process we used selected gamma, x-ray and ultraviolet parameters from the Swift GRB catalog, in which 328 GRBs had measured spectroscopic redshift. We found a significantly higher correlation ($r=0.67$) between the measured and estimated redshift than the state of art value of 0.57 (published by [Ukwatta et al. (2016)]).

Method: XGBoost
XGBoost is an advanced machine learning algorithm based on the decision tree method and uses “boosting” to improve a single weak model by combining it with a number of other weak models in order to generate a collectively strong model. We could improve the correlation:

Results

• Fig. 1. We used the data of all three Swift instruments and sufficiently cleaned them. Using the log($1+z$) data we could establish a 0.67 linear correlation between the estimated and measured redshifts.

• Fig. 2. Transforming the results back to the true redshifts the correlation remained similarly good. Further improvement can be obtained by using new data points.

Summary
We examined the Swift BAT-XRT-UVOT data. Using the XGBoost estimator we could successfully improve the redshift estimations. The log($1+z$) correlations improved between the measured and calculated data to 0.67.

Acknowledgements This work was supported by the Hungarian OTKA NN-111016 grant. Supported by the Hungarian UNKP-17-3 New National Excellence Program of the Ministry of Human Capacities.

Bibliography
Chen, T., & Guestrin, C. 2016, Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD’16), 785-794